TitaneCatégorie 1 - UNS R50250, catégorie 2 - UNS R50400, catégorie 5 - UNS R56400 Catégorie 7 - UNS R52400, catégorie 9 - UNS R56320, catégorie 12 - UNS R53400
Tuyauterie sans couture titanique Tuyau sans couture titanique Barre ronde titanique Plat/feuille titaniques Garnitures soudées bout à bout sans couture et soudées titaniques Pièces forgéees titaniques de spécialité
Les alliages offre maintenant une grande variété de produits en matériaux de titane comprenant la tuyauterie, le tuyau sans couture- et soudé, les garnitures soudées bout à bout, les brides, la barre ronde et les produits titaniques de plat :
Titane Commercialement pur et allié
|
Tuyauterie Sans couture |
1/16 » - 1 1/2 » OD |
0,016" - 0,125" POIDS |
3 millimètres - 40 millimètres OD |
0,5 millimètres - 3,0 millimètres de POIDS |
Tuyauterie Soudé |
1/2 » - 4" OD |
0,028" - 0,250" POIDS |
12 millimètres - 100 millimètres OD |
1,0 millimètres - 6,0 millimètres de POIDS |
Tuyau Sans couture et soudé |
1/2 » - 36" |
Sch 10S par Sch 40S |
Garnitures soudées bout à bout Sans couture et soudé |
1/2 » - 36" |
Sch 10S par Sch 40S |
Brides WN et aveugle |
1/2 » - 36" |
Sch 10S par Sch 40S 150 livres |
Barre ronde |
1/2 » - 12" |
Plat |
1/8" - 1" profondément |
En raison de sa force sans précédent, légèreté, marché stable et abondant et caractéristiques non-corrosives, titane a émergé comme métal de choix pour l'espace, la production énergétique et le transport, l'industrie et médical, des loisirs et des produits de consommation, notamment des clubs de golf et des cadres de bicyclette. En outre, en raison de sa force et légèreté, titane actuellement est examiné dans l'industrie automobile, qui a constaté que l'utilisation du titane pour des bielles et des pièces mobiles a eu comme conséquence le rendement du carburant significatif.

AVANTAGES DE TITANE
- De haute résistance,
- De haute résistance au dénoyautage, résistance à la corrosion de crevasse.
- De haute résistance à la corrosion sous tension, à la fatigue par corrosion et à l'érosion,
- Recourbement froid pour les coudes de tuyauterie complexes sans garnitures ou brides
- De haute résistance au rapport de poids,
- Possibilités économisantes de poids
- Bas module, dureté élevée de fracture et résistance de fatigue
- Aptitude à l'enroulement et à la pose sur le fond de la mer
- Capacité de résister à chargement chaud/sec et à froid/humide de gaz acide
- Excellente résistance à l'action corrosive et érosive de la vapeur et de la saumure acides à hautes températures
- Bons caractère réalisable et soudabilité
APPLICATIONS TITANIQUES
- Espace
- Matériel de choix aux usines de dessalement,
- Condensateurs de vapeur
- Pulpe et usines de papier (équipements de blanchiment de chlorate)
- Équipement de processus et tuyauterie
- Usines de désulfuration des gaz de fumée
- Système de dispositions pour les déchets organiques persistants ou dangereux
- Systèmes de gestion d'eau de mer,
- Industries de transformation manipulant des solutions contenant des chlorures,
- Brides, garnitures, valves, échangeurs de chaleur, canalisations verticales et canalisations
- Sports, matériau de construction, industrie médicale et accessoires.
Catégorie 1 d'UNS R50250 |
Carbone |
Fer |
Hydrogène |
Azote |
L'oxygène |
Titane |
|
|
|
|
0,10 maximum |
0,20 maximum |
0,015 maximum |
0,03 maximum |
0,18 maximum |
rester |
|
|
|
|
Catégorie 2 d'UNS R50400 |
Carbone |
Fer |
Hydrogène |
Azote |
L'oxygène |
Titane |
|
|
|
|
0,10 maximum |
0,30 maximum |
0,015 maximum |
0,03 maximum |
0,25 maximum |
rester |
|
|
|
|
Catégorie 3 d'UNS R50550 |
Carbone |
Fer |
Hydrogène |
Azote |
L'oxygène |
Titane |
0,10 maximum |
0,30 maximum |
0,015 maximum |
0,05 maximum |
0,35 maximum |
rester |
L'autre chacun 0,1 maximum, 0,4 total maximum |
Catégorie 4 d'UNS R50700 |
Carbone |
Fer |
Hydrogène |
Azote |
L'oxygène |
Titane |
0,10 maximum |
0,50 maximum |
0,015 maximum |
0,05 maximum |
0,40 maximum |
rester |
L'autre chacun 0,1 maximum, 0,4 total maximum |
Catégorie 5 d'UNS R56400 |
En aluminium |
Carbone |
Fer |
Hydrogène |
Azote |
L'oxygène |
Vanadium |
Titane |
|
|
5.5 - 6,75 |
0,10 maximum |
0,40 maximum |
0,015 maximum |
0,05 maximum |
0,20 maximum |
3.5 - 4,5 |
rester |
|
|
Catégorie 7 d'UNS R52400 |
Carbone |
Fer |
Hydrogène |
Azote |
L'oxygène |
Titane |
0,10 maximum |
0,30 maximum |
0,015 maximum |
0,03 maximum |
0,25 maximum |
rester |
Autre : Palladium 0.12-0.25 |
Catégorie 9 d'UNS R56320 |
En aluminium |
Carbone |
Fer |
Hydrogène |
Azote |
L'oxygène |
Vanadium |
Titane |
|
|
2.5 - 3,5 |
0,05 maximum |
0,25 maximum |
0,013 maximum |
0,02 maximum |
0,12 maximum |
2.0 - 3,0 |
rester |
|
|
Catégorie 11 d'UNS R52250 |
Carbone |
Fer |
Hydrogène |
Azote |
L'oxygène |
Titane |
0,10 maximum |
0,20 maximum |
0,015 maximum |
0,03 maximum |
0,18 maximum |
rester |
Autre : Palladium 0.12-0.25 |
Catégorie 12 d'UNS R53400 |
Carbone |
Fer |
Hydrogène |
Molybdène |
Azote |
Nickel |
L'oxygène |
Titane |
|
|
0,08 maximum |
0,30 maximum |
0,015 maximum |
0.2 - 0,4 |
0,03 maximum |
0.6 - 0,9 |
0,25 maximum |
rester |
|
|
Catégorie 16 d'UNS R52402 |
Carbone |
Fer |
Hydrogène |
Azote |
L'oxygène |
Palladium |
0,10 maximum |
0,30 maximum |
0,010 maximum |
0,03 maximum |
0,25 maximum |
0.04 - 0,08 |
Autre : résiduels chacun 0,1 maximum, 0,4 total maximum |
Nom commercial |
UNS |
Caractéristiques titaniques d'industrie |
Composition chimique |
Min.Tensile (KSI) |
Min.Yield (KSI) |
Dureté |
Module d'élasticité |
Le coefficient de Poisson |
Catégorie 1 |
UNS R50250 |
L'AMS AMS-T-81915 ASTM F 67(1), B 265(1), B 338(1), B 348(1), B381 (F-1), B 861(1), B 862(1), B 863(1), F 467(1), F 468(1), F1341 MIL SPECMIL-T-81556 |
C 0,10 maximum Fe 0,20 maximum H 0,015 maximum N 0,03 maximum O 0,18 maximum Rester de Ti |
35 |
25 |
14,9 |
103 GPa |
0.34-0.40 |
Catégorie 2 |
UNS R50400 |
L'AMS 4902, 4941, 4942, AMS-T-9046 ASTM F 67(2), B 265(2), B 337(2), B 338(2), B 348(2), B367 (C2), B381 (F2), B 861(2), B 862(2), B 863(2), F 467(2), F 468(2), F1341 MIL SPECMIL-T-81556 SAE J467 (A40) |
C 0,10 maximum Fe 0,30 maximum H 0,015 maximum N 0,03 maximum O 0,25 maximum Rester de Ti |
50 |
40 |
14,9 |
103 GPa |
0.34-0.10 |
Catégorie 5 |
UNS R56400 |
L'AMS 4905, 4911, 4920, 4928, 4930, 4931, 4932, 4934, 4935, 4954, 4963, 4965, 4967, 4993, AMS-T-9046, AMS-T-81915, AS7460, AS7461 ASTMB 265(5), B 348(5), B367 (C-5), B381 (F-5), B 861(5), B 862(5), B 863(5), F1472 AWS A5.16 (ERTi-5) SPÉC. MIL-T-81556 DE MIL |
AI 5.5-6.75 maximum C 0,10 maximum Fe 0,40 maximum H 0,015 maximum N 0,05 maximum O 0,20 maximum Rester de Ti V 3.5-4.5 |
130 |
120 |
16,4 |
114 GPa |
0.30-0.33 |
Catégorie 7 |
UNS R52400 |
ASTMB 265(7), B 338(7), B348 (F-7), B 861(7), B 862(7), B 863(7), F 467(7), F 468(7) |
C 0,10 maximum Fe 0,30 maximum H 0,015 maximum N 0,03 maximum O 0,25 maximum Rester de Ti L'autre palladium 0.12-0.25 |
50 |
40 |
14,9 |
103GPa |
- |
Catégorie 9 |
UNS R56320 |
L'AMS 4943, 4944, 4945, AMS-T-9046 ASMESFA5.16 (ERTi-9) ASTMB 265(9), B 338(9), B 348(9), B 381(9), B 861(9), B 862(9), B 863(9) AWS A5.16 (ERTi-9) |
AI 2.5-3.5 C 0,05 maximum Fe 0,25 maximum H 0,013 maximum N 0,02 maximum O 0,12 maximum Rester de Ti V 2.0-0-3.0 |
90 |
70 |
13,1 |
107GPa |
0,34 |
Catégorie 12 |
UNS R53400 |
ASTMB 265(12), B 338(12), B 348(12), B381 (F-12), B 861(12), B 862(12), B 863(12) |
C 0,08 maximum Fe 0,30 maximum H 0,015 maximum MOIS 0.2-0.4 N 0,03 maximum Ni 0.6-0.9 O 0,25 maximum Rester de Ti |
70 |
50 |
14,9 |
103GPa |
- |
La plupart des catégories titaniques sont de type allié avec de diverses additions par exemple d'en aluminium, vanadium, nickel, ruthénium, molybdène, chrome ou zirconium afin d'améliorer et/ou de combiner de diverses caractéristiques mécaniques, résistance thermique, conductivité, microstructure, fluage, ductilité, résistance à la corrosion, etc. Avantages titaniques
De haute résistance, De haute résistance au dénoyautage, résistance à la corrosion de crevasse, De haute résistance à la corrosion sous tension, à la fatigue par corrosion et à l'érosion, Recourbement froid pour les coudes de tuyauterie complexes sans garnitures ou brides, De haute résistance au rapport de poids. Possibilités économisantes de poids, Bas module, dureté élevée de fracture et résistance de fatigue, Aptitude à l'enroulement et à la pose sur le fond de la mer, Capacité de résister à chargement chaud/sec et à froid/humide de gaz acide, Excellente résistance à l'action corrosive et érosive de la vapeur et de la saumure acides à hautes températures, Bons caractère réalisable et soudabilité. Composition chimique titanique
Le palladium (palladium) et le ruthénium (RU), le nickel (Ni) et le molybdène (MOIS) sont des éléments qui peuvent être ajoutés aux types titaniques purs afin d'obtenir une amélioration significative de la résistance à la corrosion en particulier en réduisant légèrement des environnements où le titane autrement pourrait faire face à quelques problèmes dus aux conditions insuffisantes pour la formation de l'à pellicule d'oxyde protecteur nécessaire sur la surface métallique. La formation d'un à pellicule d'oxyde protecteur stable et essentiellement inerte sur la surface est autrement le secret derrière la résistance à la corrosion extraordinaire du titane.
Les propriétés mécaniques du titane commercialement pur en fait sont commandées par le « alliage » à de divers niveaux de l'oxygène et de l'azote pour obtenir le niveau de force variant entre approximativement MPA 290 et 550. Pour des éléments d'alliage plus de haute résistance de niveaux, par exemple Al et V doivent être ajoutés. Le Ti 3AL 2.5V a une résistance à la traction de MPA du minimum 620 dans le MPA recuit de condition et de minimum 860 en état travaillé et par effort soulagé aussi froid. Toutes les catégories de CP-titane sont nominalement alpha en structure, tandis que plusieurs des alliages titaniques ont un alpha biphasé + bêta structure. Il y a également les alliages titaniques avec les additions de alliage élevées ayant une bêta structure entière de phase. Tandis que les alpha alliages ne peuvent pas être soumis à un traitement thermique pour augmenter la force, l'addition du cuivre 2,5% aurait comme conséquence un matériel qui répond au traitement et au vieillissement de solution d'une manière semblable au l'aluminium-cuivre. Densité titanique
Le titane est puis 46% plus légèrement qu'en acier. Pour l'analyse comparative, l'aluminium est approximativement 0,12 livres/cu.in, l'acier est approximativement 0,29 livres/cu.in, et le titane est approximativement 0,16 livres/cu.in. Résistance à la corrosion titanique
La résistance à la corrosion exceptionnelle du titane est due à la formation étroitement d'un adhérent à pellicule d'oxyde sur sa surface. Une fois endommagé, réformes invisibles minces de cette couche immédiatement, maintenant une surface qui est complètement résistante à l'attaque corrosive dans l'eau de mer et tous les environnements naturels. Cet oxyde est si résistant à la corrosion que les composants titaniques semblent souvent tous neufs même après des années de service.
|